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ABSTRACT 

We continue our systematic investigation of effects of heavy particles in low 

energy physics initiated in a companion paper. It was shown therein that in 

renormalizable theories without spontaneous symmetry breaking, where there are 

heavy (M) and light (m) particles, all the g(l/M*) heavy particle effects in any 

proper amputated light Green’s function can be written in a factorized form 

I’ (M,m) = l?(m) + (l/M*) 1 C 
full theory 1 ight theory N N 

(M,m)l’(ON; m ). 
1 ight theory 

The functions, CN(M, m), which are the universal coefficients associated with 

certain local operators QN, were shown to satisfy a set of Callan-Symanzik like 

equations. In the present article, these equations are explicitly solved in QED with 

the relevant anomalous dimensions evaluated to one loop order. As an application 

within QED, assessment of the effects of muon loops on the electron anomalous 

magnetic moment is made and absence of leading logarithms in this quantity to ail 

orders in the coupling constant e is proved. 

* 
Present address. 

PACS Category Nos.: 12.20.Ds, 11.10. Jj 
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I. INTRODUCTION 

In a previous paper1 (hereafter referred to as I), we have developed a 

formalism by which one can systematically calculate physical effects of heavy 

particles at energies below their production threshold in renormalizable theories 

without spontaneous symmetry breaking. Specifically, by taking QED (quantum 

electrodynamics) with photons, electrons (mass m) and muons (mass M) as an 

example, we have shown that (i) the leading effects due to the heavy particles 

(muons) on the Green’s functions with only light external lines (i.e. those of photons 

and electrons) are of order l/M* (times logarithms of M/m) and can be factorized 

into a sum of products of universal coefficient functions containing all the heavy 

mass dependence and Green’s functions of the light theory with gauge invariant 

local operators inserted, and that (ii) these coefficient functions obey a set of 

homogeneous Callan-Symanzik type equations.* 

In this companion paper, we shall conclude our study in QED by giving the 

details of the actual calculations involved and discussing some physical applications 

of our results. In a future communication, we shall report on the more interesting 

case of quantum chromodynamics. 

The organization of the rest of the paper is as follows: in Section II, we 

recall some of the relevant formulas obtained in I to make this paper more or less 

self-contained. Section III deals with the detailed form of the Callan-Symanzik 

type equations. After exhibiting some of the one-loop calculations for the relevant 

anomalous dimension matrix elements in Section IV, these scaling equations will be 

explicitly solved in Section V. As an application, we shall assess in Section VI the 

effects of muon loops on the electron anomalous magnetic moment. A short 

summary of this paper will be found in Section VII. 
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II. A BRIEF REVIEW OF SOME RESULTS OBTAINED IN PAPER I 

Let ? B,F and I’B,F respectively denote an amputated proper (i.e. one- 

particle-irreducible, or 1PI) Green’s function with B external photons and F 

external electrons in QED with and without muons. As an efficient bookkeeping 

device for the mass derivatives, an extra mass X is introduced3 uniformly in the 

free electron propagator so that it takes the form i/(fi - m - A). Renormalization is 

performed according to the BPHZ scheme, 495 where X may be regarded as an extra 

external momentum for any subgraph. We have chosen the normalization 

conditions 

I 
foy2($, m, M, A)[ 16=o = -m 

x=0 

+r”0y2($, m, M, A)lko = 1 
x=0 

c m,M,h)j#,M = -1 

a r’,*@, m, X1 ah ‘co =l 

& r’,*($, m, X )iyo = -l 

A=0 

rO,*@, m,x)lj=o = -m 

x=0 

?E?q*, m, M,h) = (-gpvq2 + qWqv)(l + %q*, m, M,X )) 

G(q*, m, M, X)tl’q2,0 = 0 
A =o 

(2.1) 

(2.3) 
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r r270(q2, m, A) 
uv 

= (-gpvgz + qpQ(l + I&?, m7 0 

c n(c~~, m7 h)l q2,0 = 0 . 
A=0 

r”1,2 and r172 are normalized so that the Ward identity is satisfied. 
v 1-I 

The factorization theorem proved in the previous paper is then, to gtl/M2) 

r” B7F(pi7 m, M, A) = rByF(pi7 m7 A) 

(2.4) 

(2.5) 

where ONb denote gauge invariant local operators whose densities are of mass 

dimension N, b labels different operators within the same dimension, r B7F(oNb) is 

the Green’s function of the light theory with ONb once inserted, and CNb are the 

universal (i.e. independent of B and F) coefficient functions which, except for the 

overall 1/M2, contain all the M dependence in the form of the logarithms 

In (M/m)“. C Nb was analyzed to be of the form 

C = mh 5-N (5-N) Nb ‘Nb 
+ p-9 (6-~) 

Nb 7 (2.6) 

where cNb’s are dimensionless and h k is defined to be zero if k is negative. N runs 

from 3 to 6. 

The set of gauge invariant operators that appear may be chosen to be: 
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O31 = ifd4x(-$)) 

O41 = i J d4xTi@ $ 

‘42 = i I d4x(-MFy vFu ‘) 

O51 = i ld4x$iD)2$ 

‘52 = i ld4x $sF,,au’11, 

O61 = i .fd4x$(iD)2iIj$ 

O62 = i .fd4xeTFuvy” D ‘q~ 

‘63 = i ~d”xe~u(a’Fu,I$ 

OS4 = i ld4x STF cPv 
- mJ pv i 

O65 = i Id4xYFuva2FuV 

OS6 = iJ,d x 2 4 s$*~* 

‘67 = ild x 4 $5 Yp&yP$ 

O68 = is d4x $&uvffouv$ . (2.7) 

These operators are to be understood in the sense of normal products of minima] 

degree as defined by Zimmerman.5 Through the BPHZ renormalization scheme, the 

Green’s functions with these operators inserted automatically satisfy the following 

normalization conditions: Let (a/apJn symbolically denote the differentiation with 

respect to the external momenta. Then 
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(A) “(5)” rB7F(o,,)~,zp=0 = (A) “i $)” rB7F(o~bpip=~:0 (2*8) 

if R+n<N- B - $ F, where the symbol f denotes the free vertex factor corres- 

ponding to ONb. These are listed in the Appendix A. 

rB7F7 r”B7F and I’ B7F(ONb) ‘s were found to satisfy the following scaling 

equations in the Landau gauge, to be used throughout: I? BP satisfies 

where 

a 
mTjz-l +$a - eae n-41 - @x).&A -ByA-Fy, r W = 0 

. 

(2.9) 

(2.10) 

All of these quantities are defined with the bare charge eo7 the bare mass mo7 and 

the ultraviolet cutoff A held fixed. From Eq. (2.9) and the normalization conditions 

for appropriate Green’s functions, we can express them in terms of the 

renormalized Green’s functions: 
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(0) 
% = 2Ye 

2ye - 
l - 2Ye 

= - m & Y$ r0721 kch=O 

(1) 
( ) 

2 

% 
= 2ye- m(1 - 2ye) :A r”J] 

> $= A=0 

2YA = -m(l - 2ye)& ’ 1 k2+0 

r”B,F satisfies 

(2.11) 

a 
maiT + Beljii 

a 
N a +6Mma- m(l - &la% - ByA l37F =-. 0 (2.12) 

where 

-(l - iA ) = m pm 

Ye 
= imd+InZ2 

+ . . . . (2.13) 

Again the derivatives are taken with bare parameters held fixed. It was shown that 
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- (1) M =’ 7 6, = 

and 

I 

m2 
?A = YA + -2 ‘YA M 

2 
?e =Y,+;-~AY~ 

m2 iA = 8, + - A#3, 
M2 

I (2.14) 

(2.15) 

where AY,, Aye7 AB, do not have positive powers of M. 

r B7F(oNb)lS satisfy 

’ YMa7Nb rB7F(oNb) = 0 (2.16) 

(repeated indices summed) 

where the anomalous dimension matrix yMa Nb is defined by 
7 

Y Ma,Nb = lZmdm 
$1) 

Ma,Nb I mo7eo fixed (2.17) 

with 2 = matrix relating the bare and the renormalized operators. y Ma Nb defined 
7 

above is of dimension M-N and depends on A. Expanding in powers of X in the form 

‘,M-N (!L) 
y Ma,Nb (2.18) 
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we found that 

(a) 4;; Nb is block diagonal i.e. y t)a7Nb f: 0 only if M-N, 

(b) y(l) ’ Ma 
7 
Nb has non-vanishing entries only if M-N 1 1. 

From Eqs. (X9), (2.12) and (2.16) one can derive the scaling equations for the 

coefficient functions C Nb7 viz. 

r B7F(oMa) T 
Ma,Nb - y Ma,Nb ‘Nb 

+m2[ AyA(e&-B) +mABh & -FAye]rB7F = 0 7 (2.19) 

where T denotes transposition and repeated indices Maand Nb are summed over. It 

is important to note that AyA7 Al3, and Aye contain large logarithms of the form 

(In M/m)” and Eq. (2.19), as it is, is a useless set of inhomogeneous equations for 

the coefficient functions CNb. However, as we briefly indicated in I (section VI), 

the scaling equations above may be put into a form in which those governing the 

physically important coefficients are neatly decoupled from the rest to all orders in 

the coupling. Moreover these equations are homogeneous and are easily solved. In 

the next section, we shall demonstrate this in detail. 



-so- FERMILAB-Pub-79/64-THY 

III. HOMOGENEOUS SCALING EQUATIONS FOR THE 
COEFFICIENT FUNCTIONS 

Let us begin by reminding ourselves that not all the coefficient functions 

SNb ‘s are of physical interest. Those of interest are the ones which remain in the 

(0) 03 limit that the fictitious parameter x goes to zero, namely 5 5b’s and 56b‘s’ What 

we shall demonstrate in this section is that by expanding Eq. (2.19) up to order h 

and using some identities to be developed, we shall obtain a closed set of 

(0) (1) (0) homogeneous equations involvirig 5 5b7 55b and 6 & 7 which we can easily solve. 

<3b’s7 C4bb7 'Y/j7 ‘Ye and A@, will not appear in these equations. 

We shall expand the quantities in Eq. (2.19) in powers of X as follows: 

. 

(3.1) 

(Similarly for Aye and AI3,b We substitute these and Eq. (2.18) into Eq. (2.19) and 

set the coefficient of each power of h to zero. The results are as follows: Let us 

first look at the coefficient of X ‘. The equation we obtain may be written in the 

form 

(3.2) 

(3.3) 

A+B q 0 (3.4) 

where 
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A = m2 
Ir 

Ay(‘)(e a (0) B,F 
A c- B) - FAYe 3 r(o) 

+ A&“)m a B,F 
x ax r(,) 

t 
(3.5) 

and 

B = mT~)F(05a) 

- m(1 - &“))rB7F X (0) (05a)S%! 

+rzf?06a)i(ma+B a)66a6b-y$~~b/6~ . am ea< 7 (3.6) 
7 

In the Appendix B, we have derived useful identities (true to all orders) which 

express rByFto3 ,>, r B7F(041) and I’B7F(042) in terms of l?B7F and its’X derivatives 

and vice versa. It is most convenient to write them in the form 

(ex - a B)rByF = -2 rB7F(042) 

a ax r B7F = rByF(O 
31 

) 

F BP 
9 

1 - Bx(l) 
= 

m+ Xl-2y r B7F(03 I1 
e 

1 
+ l-2y r B7F(041) + 1 “:,A r B7F(042) . 

e e 

(3.7) 

(3.8) 

(3.9) 

Setting X = 0 in Eqs. (3.7)-(3.9) and substituting them into Eq. (3.5), it becomes 
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2 = a r$F(O,,) + b I$)FKJ4 1) + c r$jF(042J 

a = m(ABX(‘) - 2y(‘)) 
e 

c = - & 2A$) + 2Ayf) + (1 - 2y,)St:) ) . 

(3.10) 

(3.1 la) 

(3.11b) 

We shall now utilize the normalization conditions Eq. (2.8) for the operator inserted 

Green’s functions. First choose B = 0, F = 2 and set the external momentum to 

zero. The only non-vanishing Green’s function is 

(3.1 lc) 

Qo) 072(o 3111 l&O = -1 

Thus we immediately get a = 0. Next consider the part linear in p (with still B = 0, 

F = 2). Among the remaining Green’s functions, only aps (oj a r Op2(o ) * 4l is non-vanishing, 

which leads to b = 0. Similarly, by looking at the normalization condition for the 

photon two-point function (B= 2, F = O), we may easily conclude c = 0. Therefore 

Eq. (3.4) reduces to B = 0. This equation may be further decoupled by examining 

the appropriate normalization conditions, each of which involves only one non- 

vanishing operator inserted Green’s function. In this way one obtains the following 

set of scaling equations for the coefficient functions (5b’s and 5 6b’s: 

(3.12) 
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mam 
a+@ 
a+@ mam 

(0) T(O) (0) 
552 -Y52,5bS5b - (1 - 2ye)SI:) = 0 

(0) T(O) (0) 
6a -y 6a76bc 6b =o . 

It should be emphasized that these equations are obtained without any approxi- 

mations. (0) Notice that the system of equations for 5 6bb is already closed at this 

(1) stage, while due to the presence of 5 5b ‘s two more equations are needed to close 

the system for 5,, ‘s. These equations will be obtained from the order X equation, 

which we shall presently discuss. 

The equation that one obtains by equating the coefficient of x to zero in the 

expansion appears at first sight to have a much more complicated structure. It is 

of the form 

A+B+C = 0 

where A = Al + A2’ 

A = 1 - m2$$jF(031)2(1 - 2ye)S1:) 

+ mr(0) 4a ,B7F(0 ) 

_ 2t1 _ 2y @ -f’(O) (1) T(1) (0) 
e 4a - y 4a74bS 4b - Y4a75bS 5b 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

7 (3.17) 
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A2 = -m2r$FK)4a)(l - ZY,)E$~ 

f m2[ Ayf)( e&-B) -FA$)+ A&l)]r$F 

7 (3.19) 

and 

’ = r(O) 5a 
B7F(0 ) T(O) 1 (1) T(1) (0) 

*5a75b - y 5a75b 5 5b - y 5a76bS 6b t l (3*20) 

First, due to Eqs. (3.13)-(3.15) previously obtained, B above vanishes. For the 

remainder, it is clear from the procedure described for decoupling ho equations 

that A will vanish if it is brought into the form a’r(,) B7F(o 3l ) + b’I$j?O, $ + 

c11’$jF(04,) where a’, bf7 c’ are independent of B and F. Since Al is already in this 

form, we only need to examine A2. Using the identities (3.7)- (3.9) it is easy to obtain 

A2 = ml’$)F(031) ;a + rnAf$l) - 2mAyt) 
1 

(0) 1 - a(l) 2Ay(‘) 

- mABX l-2y, i - mr(o) B7F(0 41)l - 2ey 

- mlY$~(042)( 2Ayf)+ 1 ‘$ 
e 

2Ae’)e 

+ m2rB7F (1) (041)b + m2r$F(042)c (3.21) 
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where a, b, c are as defined in Eq. (3.1 la)-Eq. (3.1 lc) and hence vanishing. Thus we 

find that A2 is also of the desired form and Eq. (3.15) now reduces to C = 0. 

Further decoupling of this equation by using appropriate normalization conditions 

finally brings us the two equations 

a a 
m aj +BeTjZ + 

5y) _ T(O) (1) T(1) (0) 
Y5175bS5b - Y5176bS6b = ’ 

a 
maYii +B T(O) (1) T(l) (0) _ 

- y5275b5 5b - ’ 52,6bS 6b - ’ ’ 

(3.22) 

Eqs. (3.13), (3.14), (3.15), (3.22) and (3.23) constitute twelve homogeneous scaling 

equations for twelve unknown functions. After describing in the next section the 

procedure for computing the anomalous dimension matrix elements to one loop 

order, these equations will be explicitly solved in Section V. 

(3.23) 
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IV. CALCULATION OF THE ANOMALOUS DIMENSION MATRIX 
ELEMENTS TO ONE LOOP ORDER 

The anomalous dimension matrix elements yMa Nb were originally defined in 
7 

Eq. (2.17) in terms of the (cut-off dependent) mixing matrix 2. For calculational 

purpose, however, it is more transparent to express them in terms of the 

renormalized Green’s functions with operators inserted. This way of evaluation 

also makes manifest the finiteness of these objects. To obtain these expressions, 

one simply uses the scaling equation Eq. (2.16) and solve for yMa , Nb. 

Let us discuss this in more detail. We first expand yMa Nb and r 
7 

B7FtoNb) in 

powers of X as in Eqs. (2.18) and (3.1) and collect the coefficients of each different 

power. (0) (1) Since we need y Ma Nb and y Ma Nb only, it is sufficient to expand up to 
7 7 

order X. We then obtain the following two sets of equations: 

a 
( 

a 
maii; + yA ez - 

(0) - m(l - 2Ye)r(y\F(oMa) + Y Ma,Nb r(O) B7F(omb) = 0 (4.1) 

and 

a 
mam+YA eae ( a -B)-Fy,+ 8:) r EjF(oMa) -2m (1 - 2y,) r~floMa) 

(0) 
+ y Ma,Mb’(l) B7FtoMa) + mMDNely ti Nbr(Bd)(oNb) = 0 

7 
. (4.2) 

Here we used the fact that (0) yhAa Nb is block-diagonal. Since the treatment of Eq. 
7 

(4.2) is entirely similar to that of Eq. (4.1), we shall only discuss the calculation of 

(0) y Ma Nb to one-loop order through Eq. (4.1). To this order ye vanishes in the 
7 

Landau gauge and it may be dropped in the subsequent equations. 
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(0) Let us begin with y 5a 5b’s’ First consider the vertex function (i.e. B = 1, 
7 

F = 2) and look at the linear part in the external momenta. Hereafter we shall use 

the symbols L.P. for the linear part and Q.P. for the quadratic part in the external 

momenta. I? k2(05,) and $‘2(052) are then normalized to its free vertex values, 

which are respectively e(2pu + ku) and e(y ug - k,,). (See Appendix A.) Then from 

Eq. (4.1), we find 

L-p- mAr1,2(051) I AZ0 = Y(gq)751e(2pp + kJ + Y(54),52e(yuY - ku) (4.3) 

and 

L.P. rnax ~ a r172(052) I x=o = yyi751e(2p,, + ku) + Yyi752e(Y ulG - ku) . (4.4) 

The relvant one-loop diagrams for computing the left-hand side of Eq. (4.3) and 

(4.4) are listed in Fig. 1. After a straightforward calculation one obtains 

L p m & rk2(051) I A-o = 6 { 6&p,, + k,) + 4e$ ti - kp) } . . 

L.P. m GA rk2(051) I A=O = & { 6e(2pM + $,I+ 4e(-rp~ - $1 } 

(4.5) 

(4.6) 

from which (0) y5a 5b can be simply read off. 
7 

(0) By entirely parallel procedures, we may obtain y6a 6b. For example, to 
7 

(0) Obtain YGa76j, (b = 1 IT 4) to one-loop order, use 
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QJ. m $A r:‘2(06a) = yk0,),6le { yp (p + k)2 + $(2p + k) 1-I } 

+ ykoa) 63&pti - k2 y,,) 
7 

(0) 
+ Y6a764eiau v kvb (4.7) 

which is obtained again from Eq. (4.1) 

The complete results for the relevant one-loop anomalous dimension matrix 

elements are listed in Table 1, together with the values of the other anomalous 

dimensions defined in Eq. (2.11). 

V. SOLUTION OF THE SCALING EQUATIONS 

Having computed the relevant anomalous dimension matrix elements to one- 

loop order, we are ready to perform the leading logarithm sum by solving the set of 

scaling equations derived in section III. 

Let us first clarify the meaning of the leading logarithm in our problem. The 

lowest order diagram that contains a muon loop is the vacuum polarization diagram 

in the second order. This however has obviously no In M2/m2 since the electron 

field is not involved. It is in the 4th order where we first encounter a logarithm, 

namely the electron self-energy diagram of Fig. 2 . Therefore for our problem the 

leading logarithm is defined by a term of the form a(o In M2/m2)n (n = 0, 1, 2...). 

(0) (0)' We shall now solve the scaling equations. 1. Solution for 5 6bfs: c6b s obey 

Eq. (3.14), which may be written as 



-lY- FERMILAB-Pub-79/64-THY 

(5.1) 

where K E ln M/m, 6:) 
(0) 

is the column vector composed of 5 6bb, and y6 is the 

matrix connecting them. The eigenvalues of the matrix yi are easily found to be 

( pa j a=1,2 8 = 6 i 0, 0, 4, 4, 1613, 12, 12, -12 1 l c5,2) ,..., 

Let U be a matrix which diagonalizes $, i.e. 

(u-‘y @,b = pa6 ab 

U may be chosen to be 

where 

1 0 -3 0 3 

0 0 0 -2 0 

u1 = 01 014 

10 103 

-0-2 008 

e.31 

(5.4) 
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30 3 

00 0 

u2 = 14 0 -22 9 u3 = 

30 3 

80 8 

Its inverse then is of the form 

with 

I$ 1 
=iz 

4 -3 -6 12 -3 

0 4 8 0 -4 

-4 0 0 4 0 

0 -8 0 0 0 

0 1 2 0 1 

U ;l 1 
=2340 

-90 0 468 

-45 0 0 . (5.5) 

After diagonal ization, Eq. (5.1) becomes 

(5.6) 

. (5.7) 

a-, 
aK 

(u-l$O)) 6 a = 0 (no sum over a) , (5.81 

the solution of which is 
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9 e) u-1$o)(o aK)) 6 ’ a 

( 

Zt tc) 
xexp -J 

P ate9 
- fie(e’) de’ l 1 

(5.9) 
e 

Here G(K) is the running coupling constant defined, in the usual manner, by 

6(K) 
- = a,@& , g(K = 0) = e 

aK 
(5.10) 

and has the explicit form 

g2( K) = e2 

l-8%, 
E e2y 9 

3 4ll def 
(5.11) 

where we have defined y = e2/e2. Thus from Eq. (5.9), we obtain 

(0) For the leading log sum, we only need to compute c6c(0, G(K)) to the lowest order, 

i.e. to 0(G2(K)). Only $.j is non-vanishing in that order and one has 

(.f;(t), z(K)) = *) = 
15lT . (5.13) 

A straightforward evaluation of Eq. (5.12) then yields the following result: 



-22- FERMILAB-Pub-79 /64-THY 

(0) 
561 = -&b-Y 

-1) a 
Ei? 

(0) 564 = E;k9’ 

565 = ;(y+y-1)& (0) 

all other cFil s = 0 (i.e. they contain no leading logs) . (5.14) 

We have checked that, when expanded in powers of cl, these results agree with the 

explicit calculation to okx2,. 1 

2. Solutions for <5b’s: Eqs. (3.13), (3.14), (3.22) and (3.23) may be written in 

the matrix form 

(5.15) 

(5.16) 

(1) 
551 [ 1 (1) 
(52 

y5 9 Y5’ = 4% [ 12 6 

410 
1 . (5.17) 

These equations are simultaneously diagonalized by a matrix V, i.e., 
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with 

v = ( -: 1 ) , v-l = + ( ; :, . (5.18) 

The resultant equations are 

i 
a a 

rngx + (3, =+ 1 (5.19a) 

( 
a a 

ma=+ 6, z+ 1 - 10 Fn 
I( 

(0) (0) 
‘5’1 +552 1 

(1) = 551 + 51:) (5.19b) 

( 
a a 

max+ 8, ae- 6 FT )I 
2E;y; - 36s.: 

1 
= l2 j$ 25,, + 35,4 

( 
(5.20a) 

a a 
ma= + Be ae- 16 4% 561 -564) ’ (5.20b) 

We shall first solve Eqs. (5.20). Consider the equation of the type above 

( 
a 

mam + BeZ a -Y)A(E,e) = B(a,e) 

Using the variable K, it becomes 

a a 
Ti2-8eZ+y A( K, e> = -B( K, e) . 

. 1x21) 

(5.22) 

This is easily integrated to yield 
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A(K, e) = A(O, G(K)) exp - I K (&‘))dK, 
0 

1 

- j dK’B(K - K ‘, ;tK’))eXp - JK y(&“))dIc” . 
0 0 

(5.233 

This formula, together with the expressions for c61 (‘I and c64 (0) already obtained in 

(5.141, then gives 

(1) 
c51 = +3Y 

-5/4 
. (5.24) 

The leading log solutions to the remaining equations (5.19) are immediate if one 
. notes that the differential operator ma& + B e & turns a leading logarithm into a 

non-leading one. Thus consistency requires 

which in turn gives 

(0) (0) (1) 
551 = -C52 = 551 

(5.25) 

(5.26) 

at the leading log level. 

We have thus obtained complete leading logarithm sums for the physical 

(0) (0) coefficients 5 5b and 56,. It is to be emphasized that, apart from the trivial 

(0) calculation for c,, in the second order, all the necessary information is provided 

by the light theory alone, which is a remarkable result. 
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VI. AN APPLICATION: EFFECTS OF MUON LOOPS ON 
THE ELECTRON ANOMALOUS MAGNETIC MOMENT 

As an application of our formalism within QED, we shall now discuss the 

leading logarithm effect of muon loops upon the electron anomalous magnetic 

moment (g - 2)/2. Recall that for convenience we have defined the electron mass 

m and normalized Green’s functions having external electron lines off the mass 

shell at zero momenta. Thus to compute the physical (g - 2)/2, we must account 

for on-shell corrections. These are of the following two types: (a) explicit mass 

correction and (b) finite multiplicative wave function correction for the relevant 

Green’s functions. Let us denote by * the quantities defined on the mass shell. 

Then (g - 2)/2 is defined by (suppressing M-dependence) 

ii IL (p, p’, k, m*)u(p) = e$9) yu Fl(k2) + 
kV 

l&L- 
2m* 

qF2(k2) u(p) 
I 

, (6.1) 

where, in the vertex function r$p, p’, k, m*), p and p’ are respectively the 

incoming and the outgoing electron momentum and k = p’ - p is the incoming photon 

momentum. F1 and F2 are normalized by F1(0) = F2(0) = 1. rL(p, p’, k, m”) 

satisfies 

I$P, P’, k, m*) 1 I5$=m*,k=O = eYu Y (6.2) 

whereas the previously defined ru(p, pl, k, m) is normalized by 

. (6.3) 

Similarly the inverse electron propagators I’ *2yo($, m”) and r2,’ ($, m) satisfy 
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r *2yo(fi, m*) jhm* E ($ - m* - C*($, m*)) Ibrn* = 0 

& r*2yo @,m*) Itim* = 1 

r2,0@, m) 1 + o = (~-m-~(~,m))~16c0 = -m 

& r2y0& ml I+o = 1 . (6.4) 

We shall now discuss one by one the corrections (a) and (b). 

(a) Mass correction: *2,0 T and T2,’ are related to each other by a finite 

mu1 tiplicative constant. From the normalization conditions (6.4) one then easily 

obtains the mass relations 

m = (m” + C*(# = 0, m*))/(l - (aiab)c*@ = 0, r-n*)) 

= m*(l + l?(a) + l?( 02(m*/M)2)) 65) 

where the term g(a) is due to light theory. When this is substituted into leading 

logarithm expressions, it only generates corrections which are non-leading. Thus to 

this level of accuracy, the explicit mass correction may be neglected entirely. 

(b) Finite mu1 tiplicative correction: By virtue of multiplicative renormali- 

zation, we have 

r$-% P’, k, m”) = z T&p, p’, k, m) Y (6.6) 

where z is a finite constant. Applying to the right-hand side the factorization 

formula and setting $ = #’ = m*, k = 0, it becomes 
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eY = z 
1-I 1 

rlight(p, p’, k, m) 
1-I 
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. (6.7) 

Since we are interested in the leading log result, z should also be computed to the 

same level. This allows us to use for Tu(05a) and Tu(06a) their free vertex values. 

Equation (6.7) then reads 

ey 1-1 
= z r Iight(p, p’, k, m) 

I 
1-I 

V 

+ z &,!;(2pu + ku) + $.?! ouyk 1 
+f$ Ef$p (p + H2 + f12pv + k $’ 

(0) + t,,b’ kY,, (0) - p,$) + 563(k$ - k2r,) 

kV 
6 1 I5=$=m*,k=O 

To solve for z, we apply the Gordon decomposition 

ylJ = zrn* 
l- {(p, +p;) + bl-lvkv} 

. (6.8) 

Y (6.9) 

which is valid when sandwiched between c(p,> and u(p) as in Eq. (6.1). In the present 

case with k = 0, this simplifies to 
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ylJ = pJm* . (6.10) 

rl;‘ghfb~ P’Y k, m) 1 $+m*,k=O (6.11) 

substitution of Eq. (6.10) into Eq. (6.8), after dropping the common factor epu/m*, 

yields 

z = 1 - (m*/M)2 . (6.12) 

Therefore from Eq. (6.6) we obtain 

I;(P, P’Y k, m*) ~$+m*,k2=0 = [ L($+)2(2<g+3$;)] 

X r light(p, p’, k, m) (0). v 
1-I 

+ ku) - 552iouvk .- 3 

5 k”lC y&p + k)2 + 16(2p,, + kp)) 

+ 5kO,)(p*kyu - p,10 + $j)(k,#- k2y,,) 

Y (6.13) 

where we have dropped terms which do not contribute to the leading log. We may 

now bring this into the form of Eq. (6.1) (with kZ = 0) by using the identities valid 

on the mass shell, viz. 
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2Pu + k 1-I 
= pgr + put = 2m*yu - io,,$’ 

P’kYp -puK = H {(p+kJ2-p2-k2}yu = 0 

kpP - k2yp = 0 . 

Projection of the magnetic part then yields 

magnetic part of r>p, p,, k, m*L/ ~~=m*,k2=0 

kV 
= e%L 

2m* 
1 - (m*/Mj2 (0) 2ty/ + 3561 )I 

. 

(6.14) 

Upon multiplying out the terms above and keeping only those containing the leading 

logs, the right-hand side becomes 

(6.15) 

e . - + ioVvkv (m*/MJ22 
2m l 

But Eqs. (5.14) and (5.26) tell us that the leading logarithms precisely cancel in the 

above combinations of the coefficient functions. In other words, there is no leading 

logarithms for (g - 2)/2 to all orders in e.6 The effect then is of the form 

a2(aln(M/m)2)n, the assessment of which requires two loop calculations for the 

(6.16) 

anomalous dimensions. 
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VII. SUMMARY AND CONCLUSION 

In this article, taking QED as an example, we have carried out explicit cal- 

culations of effects of heavy particles (muons) in low energy physics using the 

general formalism developed in I. First the Callan-Symanzik like equations 

governing the heavy mass dependence of the universal coefficient functions cNals 

were brought into a closed set of homogeneous equations, with the help of some all 

order identities and the appropriate use of the normalization conditions obeyed by 

the operator inserted Green’s functions r(ONa),s (section III). We then expressed 

the relevant anomalous dimensions appearing in these equations in terms of 

I’(ONa)‘s and evaluated them to one loop order (section IV). After diagonalizing the 

anomalous dimension matrices so obtained, the scaling equations were solved to 

produce leading logarithm expressions for the physical coefficient functions via 

“improved’, perturbation expansion in the running coupling constant z(M/m) (section 

V). It should be emphasized that, aside from the trivial calculation of the second 

order vacuum polarization due to a muon loop, all the necessary information was 

furnished by the light theory alone, which contains no knowledge of the heavy 

sector. This feature is as remarkable as it is pleasing. As an application of the 

results obtained, we examined the leading effects of muon loops upon the electron 

anomalous magnetic moment (g - 2)/2 (section VI). On-mass-shell corrections 

required due to our definitions of m and Green’s functions at zero momenta were 

taken into account and it was found that the leading effects precisely cancel to all 

orders in e. Although somewhat unfortunate as it was, it clearly demonstrates the 

practical capability of our formalism developed and elaborated in this and a 

previous paper of 0urs.l 

As was mentioned in the concluding section of I, application of our method, 

suitably modified, to asymptotically free theories such as QCD should prove even 

more useful, since the running coupling constant g’?M/m) decreases as M/m 

increases. Such extension is currently under investigation. 



FERMILAB-Pub-79/64-THY 

ACKNOWLEDGMENTS 

One of us (Y.K.) would like to thank Professor T.L. Trueman and the members 

of the theory group at Brookhaven National Laboratory for hospitality, where a 

part of this work was carried out. This work has been partially supported by the 

U.S. Dept. of Energy. 



-32- FERMILAB-Pub-79/64-THY 

APPENDIX A. FREE VERTEX FACTORS FOR 0 
NORMALIZATION CONVENTION FOR OPERATOR%&!ED 

GREEN’S FUNCTIONS 

In this appendix, we shall list the free vertex factors for ONa’s (Feynman 

rules) and specify the normalization convention for amputated proper Green’s 

functions with ONa% inserted, l’ ByF( oNa)= 

We only need to consider up to 5-point functions. Free vertex factors are 

obtained by Fourier transforming the following free field matrix elements after 

amputating free propagator legs <$ v a6 > ‘s and iAuAv>‘s: 

B=O ,‘F=2 

8~2 , F=O 

B = 1 , F=2 

B=2 , F=2 

B=3 , F=2 

B=O , F=4 

<AuAvoNa’ 

<rl,$AAO a@ 1-1 v Na’ 

<$T A A A0 af3 1-1 v XNa> 

. (A.11 

These are listed in Fig. 3. 

TO define rByF( ONa), we must amputate full propagator legs. Thereupon 

the sign of the 2-point functions are changed relative to the free vertices given in 

Fig. 3. Specifically, we have 

r0y2(o ) = IGoy2(0 
Na i ) Na A (A.21 
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r2y0(o 
pv Na 

) = ‘G 2Yo 
T pv(ONa)A (A.31 

where GByF(O ) Na A means the proper Green’s function obtained with the vertices of 

Fig. 3 with free light external lines amputated. In the same notation, all the other 

Green’s functions are defined similarly with l/i replaced by i. 

Several examples should be helpful 

r0y2(031) = -1 + higher order 

I’ 02 (041) = 15 + higher order 

2YO rl.lv(042) = (-g,,$ 2 + kukv)(l + higher order) 

1,2 I’u (041) = ey ~ + higher order 

rk2(05,) = e(2pu + k,,) + higher order 

etc., where “higher order’, means higher order in momenta and X. 
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APPENDIX B. PROOF OF THE IDENTITIES EQ. (3.7)-EQ. (3.9) 

In this appendix we shall prove the useful identities Eq. (3.7)-Eq. (3.9) which 

were crucial in decoupling the renormalization group equations. 

(i) First consider T B9F(042). G’ iven a diagram contributing to I’ W 9 an 

insertion of 042 may be made to every internal photon line, with the sole effect of 

changing the sign of the whole diagram. Let V be the number of vertices. Then the 

number of internal, photon lines b is given by .b = (V-- B)/2. 
-a ~~ 

Since the operator ea 

precisely counts the number of vertices, we can immediately write 

rByF(04*) = - L( a 2 es -B)ayF (B.1) 

042 being an operator of dimension 4, renormalization is performed in identical 

fashion for both sides of Eq. (B.l). Thus it is valid for renormalized Green’s 

functions. For two-point photon function, the trivial 0th order diagram has no 

internal photon line. However it is easily checked that Eq. (8.1) holds for this case 

as well. 

(ii) Next, we shall examine I’ ByF(03i). Before th e subtractions are made, 

cl early 

03.2) 

holds. We have to check that after renormalization, this relation remains intact. 

By power counting, only the electron 2-point function I’ -092(03,) is (logarithmically) 

divergent, where bar means that the internal subtractions are already performed. 

Therefore the renormalized Green’s function I’ Oy2(03,) is 

r Oy2(03,) = P~2(03$ - r0f2(o 31 *=x=0 l 

)I (5.3) 
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We now prove Eq. (B.2) for renormalized quantities by recursive reasoning. Let us 

assume ?0,2(03,) = &i?,’ holds, which is easily checked for second order. Then 

rG2(o ) _ .Lj5)y2 
31 - ax - 

But since 

we get 

a axr 092 = a -0,2 ahr - ax a ~‘21+x=o 

From Eq. (B.4) and Eq. (B.6), we obtain 

r o,2(03,) = &r”,’ 

. 

. 

(B.4) 

03.6) 

(B-7) 

Upon substituting this into the relevant part of a general diagram, one may easily 

conclude 

r B,F(031) = $ArB,F (B.8) 

for any B and F. 

(iii) Finally we consider r B,F(04,). It is convenient to deal with the 

combination 

0 s 041 +b-n+X)031 . (B-9) 
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The free vertices of the operator 0 are i<h - m - X) for two fermion vertex and 

-ie y, for fermion-fermion-photon vertex. Thus, given a diagram contributing to 

r B,F, we may obtain diagrams contributing to I’ ByF(0) in the same order in e by 

either (a) inserting the vertex i(fi - m - h) into an internal fermion line, or (b) 

regarding a vertex -ie y ,, as an insertion of 0. Both procedures give back the same 

diagram except with a minus sign for (a). Thus we obtain V - f original diagrams, 

where f is the number of internal fermion lines. Using the topological relation 

2V = 2f + F, this number is equal to F/2. So for the unrenormalized functions we 

have 

r fAF(0) = r :;F(041) + r tAF((rn + x )03$ = (F/2)ruB;1F . (B.lO) 

(Again it is easily checked that the relation above holds for the trivial free 

diagrams as well, which do not have any internal lines.) Renormalization, however, 

alters this simple relation in a non-trivial way. r ByF(( m + X)031) is renormalized in 

the same manner as I? B’F(04$. Th’ is means, after renormalization, 

rByF(oal) + iirB,F(031) + mrByF(O(:l) = (F/2)rByF (B.11) 

where Oyl) is made finite by once over subtraction. Thus it is necessary to re- 

express O$l’ 1 in terms of minimally subtracted operators as we described in the 

appendix of I. (See section 4-3 in particular.) Applying the procedure detailed 

there, one easily obtains the result 



-37- FERMILAB-Pub-79 /64-THY 

m rB,F(o(l)) = 31 &r”‘“( m +mh ($jfr”~21~A=Oj 

- ~~F(041h~ & Fop2 Ifih=O 

- rB’F(042h&n lk2-A=o . (B.12) 

The derivatives of the Green’s functions appearing in this equation are nothing but 

certain combinations of the anomalous dimensions defined in Eq. (2.11). Substi- 

tution of these expressions then yields 

(1) 
mrB,F(o(l)) = 

31 
m -A ‘!A -2ye a B,F 

lm2Ye nr 

2ye 
+ 1 - 2y, 

2YA r ByF(0411 t 1 _ 2y r ByF(042) l (B.13) 
e 

From Eqs. (B.l), (B.81, (B.11) and (B.131, we may solve for T ByF(04 1), which gives 

Eq. (3.8) quoted in the text. 
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Fig. 1: 

Fig. 2: Fourth order electron self-energy diagram with a muon loop. 

Fig. 3: List of the free vertices of the gauge invariant operators ONa. 
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FIGURE CAPTIONS 

Diagrams contributing to the one-loop anomalous dimensions 

(0) 
y 5a,5b’ 

(0) Similar diagrams needed to compute y 6a 6b and Y 
(1) y 6a 5b are easily obtained with the help of the list of free 

Y 
vertices given in Fig. 2. 
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